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"The calculation of" chamcteristic polynomials o f  
graphs o f  any size is usually extremely tedious . . . .  " 

Harary, King, Mowshowitz and Read [1]. 

Abstract 

We list uses of, and the computational methods for the characteristic polynomial 
of a (chemical) graph. Four computational methods are singted out for more detailed 
presentation. These are the graphical methods of Sachs, the recurrence formulae for 
several classes of simple graphs, the method based on Ulam subgraphs, and the 
Le Verrier-I:addeev Frame recursive method. The latter method appears, at 
present, to be the most efficient procedure for the computation of the character- 
istic polynomials of graphs of sizes with up to even a few hundred sites. 
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1. I n t r o d u c t i o n  

The characteristic or spectral polynomial P(G;x)  of a (chemical) graph G is 
the characteristic polynomial of its adjacency matrix [2] • 

P(G;x)  : det [ x I - A [  = O, (1.1) 

where A and I are, respectively, the adjacency matrix of a graph G with N vertices and 
the N x N  unit matrix. A graph eigenvalue x i is a zero of the characteristic polynomial 

P(G;x i )  = 0 (1.2) 

for i = 1 to N. The complete set of  graph eigenvalues x l , x 2 , . .  ,x N forms the 
spectrum of the graph [3]. The eigenvalues are real and the interval in which the 
graph eigenvalues lie is bounded. According to Frobenius' theorem [4], the limits of 
the graph spectrum are determined by the maximal valency of a vertex d(max) in G : 

- d ( m a x )  ~< x i <~ d(max). (1.3) 

Among connected graphs, equality is achieved on the right-hand side iff all vertices 
have the same degree, while equality is achieved on the left-hand side iff also the 
graph is bipartite; in either case, these maximally extreme eigenvalues are non- 
degenerate. 

The characteristic polynomial of a graph is most offen given in the coefficient 
form: 

N 

P(G;x)  = Z an x N - n  (1.4) 
n = 0  

The coefficients ao, a I . . . . .  a N are graph invariants and are related to the structure 
of a graph in a simple way [ 2 - 6 ] .  

The characteristic polynomial can also be given in terms of its zeros [ 7 ]  

P(G;x) = I-I ( x - x i ) .  (1.5) 
i = i  

If the pennanent of the adjacency matrix is introduced instead of the deter- 
minant in (1.1), the pemlanental polynomial ??(G ;x) of G is obtained [8] • 

9P(G;x) = p e r l x I - A [  = 0. (1.6) 

The characteristic polynomial is an important structural invariant, although 
it is not always unique to a sinne graph because of the fact that non-isomorphic 
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graphs may possess identical characteristic polynomials [9 217] .  Non-isomorphic graphs 
with identical spectra are called isospectral or cospectral graphs [ 1,3,9,14,18,19]. 
A special class of isospectral graphs is named endospectral graphs [16,20]. 

2. The  uses of  the characterist ic  po lynomia l  

The characteristic polynomial of a graph continues to hold current chemical 
interest because it arises in numerous applications [20-25] .  Some of these applica- 
tions will be briefly summarized below: 

(i) The characteristic polynomial (and the related acyclic (reference, match- 
ing) polynomial [26 -29]  ) is used in the topological theory ofaromaticity [21,30-33].  

(il) The characteristic polynomial is useful in predicting the relative stabilities 
of conjugated hydrocarbons [34] and in the fommlation of the topological effect on 
molecular orbitals (TEMO) concept [35,36]. 

(iii) The last two coefficients (a N_ 2 and aN) in the characteristic polynomials 
of benzenoids, arenecyclobutadienoids (such as benzocyclobutadienoids), azulenoids, 
pentalenoids, etc. can be used for counting Kekulé valence structures and Dewar 
valence structures [37-39] ;  quantities that represent the basis of resonance- 
theoretical approaches such as the structure-resonance theory [40-42] and the 
conjugated-circuit model [43-46] .  

(iv) The characteristic polynomial has found application in quantum chemistry 
[22,23,47-50] ,  chemical kinetics [51], dynamics of oscillatory reactions [52], 
solutions of Navier-Stokes equations [53] and in statistical mechanics because it 
serves as a generating function for dirner statistics on trees such as Bethe lattices [54]. 

(v) The coefficients of the characteristic polynomial may be interpreted as 
the counts of random walks over the structural network [55-57] .  Random walks 
on the structural networks (lattices) are fundamental in several areas in representing 
the path of a diffusing particle or in modelling the conformations of flexible macro- 
molecules, especially in dilute solution [58-61 ]. 

(vi) The characteristic polynomials are related to several othergraphinvariants 
such as spectral moments [55,56,62]. They are also auxiliary functions for counting sub- 
graphs of various kinds belonging to a given (chemical) graph [2-6,21,29,37,48, 
63 - 6 5 ] .  

(vii) The characteristic polynomial can be used for a partial ordering of 
forests [66]. 

(viii) The characteristic polynomial can be used for counting the spanning 
trees of labelled planar graphs [67,68]. 

(ix) The characteristic polynomial can be used in analysis ofNMR spectra [69]. 
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(x) The characteristic polynomials may be used for coding (chemical) 
graphs [70]. 

(xi) The characteristic polynomials may arise in the Y-conjugation model 
of cyanine dyes (which are depicted by polymethine graphs) [71 ]. 

(xii) The characteristic polynomial serves as the generator for the character- 
istic equations of a graph [20]. (The characteristic equations for a graph are defined 
as the system of equations for the coefficients of  the characteristic polynomial.) 

(xiii) The characteristic polynomial has also been found useful in areas other 
than mathematics [ 1 - 3 , 5 , 9 , 2 0 , 2 7 , 7 2 - 7 5 ] ,  physics [53 ,54 ,58-61]  and chemistry. 
For exmnple, in computer science (e.g. [76] ) and biology (e.g. [77] ). 

3. C o m p u t a t i o n a l  m e t h o d s  fo r  the  cha rac te r i s t i c  p o l y n o m i a l  

The computation of the characteristic polynomial is rather involved due to 
the combmatorial complexity of  the problem [1]. To illustrate this point, let us 
consider a planar square lattice graph with 36 vertices 1 

The characteristic polynomials of this graph, which is not a particularly complex 
structure, is given by [78] : 

P ( I  ;x) = x 36 - 60x  34 + 1572x 32 - 23,772 x 3° + 231,126x 28 

- 1 ,523 ,844x  26 + 7,005,754x 24 - 2 2 , 7 5 7 , 3 8 0 x  22 

+ 52,393,405 x 2° - 85,052,332 x 18 + 96,104,022 x 16 

- 73,969,028 x 14 + 37,486,225 x 12 - 11,814,292 x l° 

+ 2,074,464 x 8 - 153,664 x 6 . (3.1) 

The largest coefficient (i.e. the coefficient of  x ~6) is of the order of 96 million, 
which indicates the combinatorial complexity involved in the computation of  the 
characteristic polynomial. 
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There are many methods available for the computation of the characteristic 
polynomials for graphs. Some of them are summarized below: 

(i) The Laplace expansion of the determinant (1.1), which is unwieldy for 
larger systems. 

(il) The matrix diagonalization procedure and the use of the Viete formula 
(1.5). There area number of methods available for the diagonalization of a (adjacency) 
matrix [79] : Jacobi's method, Givens' method, the QR-algorithm, and many others. 

(iii) Direct graphical constructions such as Sachs' procedure [5] have been 
explored rather extensively for chemical graphs [3,4,19,21,29,37,48,80-90]. Early 
graphical procedures resulted from the need to carry out simple MO calculations in 
spite of the lack of computers. Amongst the first to propose the constmction of the 
characteristic polynomial by breaking a graph into smaller transferable fragments 
for wisch the characteristic polynomials can be easily computed were Samuel [91], 
Coulson [4], and Heilbronner [92]. Graphical constructions have shown a great 
conceptual value, but have a practical difficulty in the form of an enormous increase 
of combinatorial possibilities of basic figures with the increase of the size of the 
(chemical) graph. This problem cannot be avoided even if the graphical construction 
is carried out by computer [93 - 9 5 ] .  

(iv) The characteristic polynomials of classes of simple graphs (molecules) 
such as chains (polyenes) and cycles (annulenes) can be obtained by recurrence 
formulae [1,3,21,92,96]. 

(v) Special methods such as the transfer matrix method [97,98], the partition 
technique [99-101] ,  the polynomial matrix method [102-105],  the pruning 
technique [106-109] ,  the ultimate pruning technique [110], the symmetry 
blocking method [111,112], the operator tectmique [113], the Chebishev expan- 
sion [56,114-116],  the use of the Frobenius matrix [117], the use of power sum 
symmetric functions [118,119], the use of symmetry properties of a structure [120], 
the use of powers of the adjacency matrix [121], the use of the Ulam sub- 
graphs [ 122,123 ],  the use of a functional group-like concept [ 124-126] ,  etc. 

(vi) Recursive techniques such as those of Le Verriet [127,128], Faddeev [129] 
and Frame [130]. 

There are too many methods in the above to be reviewed in this sinne article. 
Here, we will present briefly the method of Sachs, the recurrence fmmulae for simple 
graphs, the method based on the Ulam subgraphs, and the recursive techniques of 
Le Verrier, Faddeev, and Frame. 
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4. The method of Sachs for computing the characteristic polynomial 

The method of Sachs [5] relates the structure of a graph G and the coefficients 
of its characteristic polynomial. All coefficients of P ( G x )  may be obtained from the 
Sachs fommla [37] • 

a n = ~ (-1)P(S)2 c(s), (4.1) 

s 67 S n 

where s is a Sachs graph, S,, a set of  all Sachs graphs with n vertices, while p(s) and 
c(s) denote, respectively, the total number of components and the total number of 
cyclic components in s. The components of a Sachs graph can be either complete 
graphs K 2 or cycles C m . Then, if o% is the number of such m-site components, 
~ m  Ill Og m = 11. 

The characteristic polynomial can now be expressed in the following form by 
introducing (4.1) into (1.4): 

»(G.,-) = Z Z (-1) ~'(«) ec(«)x"-:« 
n = 0 s ~~ S n 

(4.2) 

If the cyclic components are neglected, the characteristic polynomial reduces 
to the acyclic polynomial of a graph [30 .»..] • 

N 

s~'c(c:-') = Z Z' ( -1)P(S) x"  - N 

n = 0 s (- S n 

(4.3) 

The two polynomials are, of course, identical only for acyclic graphs [32]. The 
characteristic polynomial and acyclic potynomial are basic quantities in a topological 
(graph-theoretical) resonance energy modet [21 ,30-  33,48,65 ]. 

The Sachs fonnula was also adopted for computing coefficients of the 
characteristic polynomial of a vertex-weighted and edge-weighted graph Gve w [21,80, 
131 - 1 3 3 ] "  

s K :  i n s  C i n s  

an = Z ( -1 )  p(s) 2c(s) H h i  H k 7 !.-I k i , .  (4.4) 
s ~± S n i / " 

In the above equation, symbols have the following meanmg: h i is the weight of the 
/th vertex depicted by a loop, the first product gives the contribution from all the 
weighted vertices i with weights h i in s, k/ is the weight of the jth edge, which may 
be either a K 2-component of s or an edge in a C-component of s, the second product 
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gives the contribution from all the weighted K2-components in s, and the third 
product gives the contribution from all the weighted edges in the C-component of s. 
Other symbols in (4.4) have their previous meaning. 

As an example, we will compute the characteristic polynomial for the weighted 
graph 2 by means of the coefficient fommla (4.4). 

@ h  

2 

The computation of P(Gvew ;x) for 2 is given in table 1. 

Tal)le 1 

T h e  c o m p u t a t i o n  o f  the  cha rac t e r i s t i c  p o b  n o m i a l  for  the  we igh t ed  g r a p h  2 by the  c o e f f i c i e n t  

f o r m u l a  (4.4)  

n s , ,  a n 

o 0 1 

2 - -  \ + 3  ( - 1 )  1 2 0 h ° k ° = - ( 2 k  2 + 3 )  

f(~l,«'l ,« ,l, (:ù),(~/) 

3 ( - 1 )  2 2 0 h I k ° = 3 h  

4 ( - 1  i) 2 2 0 h ° k 2 

+ ( - 1 )  5 2 0 h ° k ° = 4 k  2 + 1  

( - 1 )  3 2 0 h I k ° 

+ ( - 1 )  1 21 h ° k 2 = - ( h  + 2 k  2) 

P ( 2 ; x )  = x  s - h x  4 - ( 2 k  3 + 3 ) x  3 + 3 h x  2 + ( 4 k  2 + 1 ) x - ( h + 2 k  2) 
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5. T h e  charac te r i s t i c  p o l y n o m i a l s  o f  s o m e  classes o f  c h e m i c a l  graphs  

Graphical constructions of  the characteristic polynomial lead to the recurrence 
formulae for some classes of  simple (chemical) graphs. Several of these will be shown 
below. 

(i) Chains 

Chains may be used to depict the carbon skeleton of n-alkanes or the zr-skeleton 
of  linear polyenes. We denote the characteristic polynomials of chains with n vertices 
by L n for simplicity. The recurrence formula for the characteristic polynomials of 
chains is given by [92] : 

L n = X L n _  1 - Ln_ : , (5.1) 

wi thL  o =  1 andL  l = x .  
The tables of the characteristic polynomials for chains with up to n = 20 are 

given elsewhere [21,80].  

(ii) Trees 

Trees may be used to depict acyclic structures such as branched alkanes. The 
generating formula for the characteristic polynomial T n of a tree with n vertices is as 
follows [1,21,92,134]:  

T n : T h _  e - -  T n _ ( e )  , ( 5 . 2 )  

where T n _ e and T n _ (e) are the characteristic polynomials of  subgraphs obtained after 
deleting from the tree, respectively, the edge e, and the edge e along with its incident 
vertices. As an example, we apply the above formula to the tree 3 in table 2. 

4 ~  
3 

T a b l e  2 

T h e  c o m p u t a t i o n  o f  t h e  c h a r a c t e r i s t i c  p o l y n o m i a l  

f o r  t h e  t r e e  3 b y  f o r m u l a  ( 5 . 2 )  

O 

) ~ - O O 

Tlo = L 3 "L  7 - L~ "L  s = x l°  - 8 x  8 + 2 6 x  ~ - 2 7 x  4 + 8x=  
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The strategy of using (5.2) is to break up the tree into constituting chains in 
the smallest possible number of steps. Note that the chain is the unbranched tree. 

For large and highly branched trees, the application of (5.2) becomes 
rather complicated. In that case, the pruning technique of Balasubramanian and 
Randid [ 1 0 6 - 1 1 0 ]  is recommended. 

( i i i )  

or the 
nomial 

C y c l e s  

Cycles C n (n t> 3) may be used to depict the carbon skeleton of cyclo-alkanes 
n-skeleton of annulenes. The generating Yonnula for the characteristic poly- 
o f a  cycle with n vertices is given by [1,21,92,134] : 

P(C n ;x) = L n - L n _ 2  - 2. (5.3) 

The idea behind ttüs formula is to reduce the cycle C n into constituting chains in 
two steps: The first step is to remove an edge from C n and the second step is to 
remove this edge, incident vertices and adjacent edges from C n. In the first case we 
obtain a chain with n vertices whose characteristic polynomial is L n, and in the 
second case we obtain a chain with t7 - 2  vertices whose characteristic polynomial 
is L n _ 2 The tenn - 2 is the contribution for cycle closure. 

( iv )  M ö b i u s  c y c l e s  

Möbius cycles Cn* (n ~> 3) are cycles with at least one edge (or more generally, 
an odd number of edges) with the weight - 1 [ 135,136]. They may be used to describe 
Möbius annulenes [ 1 3 7 - 1 3 9 ] .  The generating formula for the characteristic poly- 
nomial of a Möbius cycle with n vertices is again based on the two-step reduction 
procedure, which by the removal of the edge e (the first step) and by the removal 
of  the edge e, incident vertices and adjacent edges (the second step) from C 2 produces 
two chains: a chain with n vertices whose characteristic polynomial is L n and a chain 
with n - 2 vertices whose characteristic polynomial is L n _ 2- The generating formula 
for the characteristic polynomials of Möbius cycles is then given by: 

P(Cn* ; x) = L n - L n -z + 2. (5.4) 

The term +2 is the contribution for the Möbius cycle closure. 

6. T h e  charac te r i s t i c  p o l y n o m i a l  and  U lam subg raphs  o f  a g raph  

Ulam subgraphs of a graph G represent a collection of subgraphs G -  v i 

obtained by the consecutive removal of a sinne vertex v i ( i  = 1 , 2  . . . . .  N )  from G 
until the vertex-set {v i} of G is exhausted [123]. The sinn of the characteristic poly- 
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Table 3 

Characteristic polynomials for the collcction of Ulam subgraphs belonging to 
the weighted graph 2 

Weighted graph Ulam subgraph Characteristic polynomial 
2 2 -  v i P ( 2  - v i;  x )  

,•, /-5 
h 

x 4 - 3x 2 + 1 

n 

z 

h 

~ h  

~ h  

@ h  

~ h  

x « - - h x  3 .... ( k  2 + 2 ) x  z + 2 h x + k  2 

x 4 - h x  3 - (2k ~ + 1)x 2 + h x +  k 2 

x 4 _ h x  3 _ (2Æ 2 + 1)x 2 + h x + k  2 

x 4 - h x  3 - ( k  ~ + 2 ) + 2 h x + k  ~ 

~ P ( 2 -  vi;  x) = 5x 4 - 4 h x  3 - 3(2k 2 + 3)x 3 + 6 h x  + (4k z + 1) 
i 
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nomials P ( G  - v i ; x )  of Ulam subgraphs G - v i (i = 1,2, . . . ,N) of G is equal to 
the derivative of the characteristic polynomial P ' ( G  ; x )  of G : 

P ' ( G ; x )  = ~ P ( G -  u i ' x ) .  (6.1) 
i 

The characteristic polynomial of G is then given by: 

P ( G ; x )  = / P ' ( G  ;x) d x ,  (6.2) 

where the integration constant is equal to the negative determinant of the adjacency 
matrix of G. 

As an example, we consider the weighted graph 2. The corresponding Ulam 
subgraphs and their polynomials are given in table 3. If we integrate P ' ( 2 ; x )  and 
evaluate the integration constant '~: 

(: : - de t lAI  : - (2k 2 + h ) ,  (6.3) 

the characteristic polynomiN of 2 is obtained. 

7. T h e  Le V e r r i e r - F a d d e e v - F r a m e  l n e t h o d  for  c o m p u t i n g  

the  charac te r i s t i c  p o l y n o m i a l  

The very efficient method for the computation of the characteristic polynomial 
for any (chemical) graph is the recursive approach of Le Verrier, Faddeev, and Frame 
[127-130] .  This approach was introduced by Le Verrier in 1840, and was used in 
the perturbative computation of the orbits of planets in out solar system. The 
approaches developed by Faddeev and by Frame essentially reduce to Le Verrier's 
method [140]. Faddeev's approach is a modification, while Frame introduced a novel 
algebraic style. The Le Ve r r i e r -Faddeev -F rame  method has been shown by 
Balasubramanian [22,24,57,78,141-143] and by the Zagreb Group [144] to be a 
computationally convenient procedure for generating the characteristic polynomials 
for large chemical graphs. 

Recently, Barakat [118] has also analyzed the Frame method and has shown 
that it is based on symmetric functions mad the Newton identities. 

The recursive fommlae for computing the coefficients % of the character- 
istic polynomial of G, given in the following form: 

P ( G ; x )  = d e t l x I - A I  = x N - a l x N - 1  _ a 2 x N - 2  _ . . .  

ù . - a N _ l x - - a N  =0 ,  (7.1) 

are presented below for each of the three procedures. 
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(i)  Le  Verrier 's  p r o c e d u r e  

a n = ( 1 / n ) ( t r A  n - a  1 t r A  n - 1  

where  t r A  is the  t race  o f  the  m a t r i x  A .  

(i l)  Faddee v ' s  p r o c e d u r e  

a n = (1 /n )  t r A n .  

(iii) I~)'ame's p r o c e d u r e  

a n = ( 1 / n ) t r A B  n _ l  • 

E q u a t i o n s  (7 .2)  and (7 .3)  are re la ted  b y  

A" - 1 A n = A n - a I - . . . 

and eqs. (7 .3)  and (17.4) b y :  

A n = A B n _ 1 , 

where  B n _ 1 

B n -  I 

Note  tha t :  

B N = A N - a N I  = 0.  

- . . .  - a n _  1 t r A ) ,  (7 .2)  

(7 .3)  

(7.41 ) 

- a n - 1  A ,  (7 .5)  

(7 .6)  

are N x N ma t r i ce s  wh ich  can be o b t a i n e d  f rom the recursive r e l a t i onsh ip :  

= A n -  1 - -  6 ¢ q  - 1 I .  (7 .7)  

(7 .8)  

o rgan ized  as fo l lows :  

G -+ A = A  1 

ù . --)" a ß r _ l  -+ Bsr-1  -" AN ~ a~. -~ B~r = 0. (7 .9)  

- + a  I - + B  1 - + A  2 - + a  2 ~ . . .  

S ince  eqs. ( 7 . 2 ) - ( 7 . 4 )  can be easi ly t r a n s f o r m e d  a m o n g  themse lves ,  all three  

o f  the  above  p r o c e d u r e s  reduce  to  the  same m e t h o d  for  c o m p u t i n g  the cha rac t e r i s t i c  

p o l y n o m i a l  o f  a g raph .  

The  a lgo r i t hm for  c o m p u t i n g  the  coe f f i c i en t s  o f  the cha rac t e r i s t i c  p o l y n o m i a l  

for  a given ( chemica l )  graph b y  the Le V e r r i e t -  F a d d e e v - F r a m e  m e t h o d  can be 
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Table 4 

The computa t ion  of the characteristic polynomial  for the weighted graph 2 
by the Le Verriet  - F a d d e e v -  Frame method 

2 

(I) a o = 1 (by defini t ion) 

(II) a I 

B I  

(III) a :  

I h k 0 0 k 0 1 0 

A = 0 1 0 1 

0 0 1 0 

k 0 0 1 

= t rA~ = h 

B 0 k 0 0 k l k - h  1 0 0 

= A~ - a l l  = 0 1 - h  1 0 

0 0 1 - h  1 

L k  0 0 1 - h  

I 
2k 2 0 k k 0 1 0 k 2 +1 - h  1 k 2 

A 2 = A B  1 = k - h  2 - h  1 

k 1 - h  2 - h  

0 k 2 1 -h k 2 +i 

= (1/2) t rA~ = 2k:  + 3  

B 2 = A 2 - a 2 I  = 

k l 0 

0 = A ~  

1 

0 

I 
- 3  0 k k 

0 - (k ~ + 2) - h 1 

k - h - (2k 2 + 1) - h 

k 1 - h - (2k  2 + 1) 

0 k 2 1 - h 

I 
- 3h - 2k k k 

2k - h  - (k 2 +1)  k ~ - h  

A 3 = A B  2 -- k - ( k  2 +1)  - 2 h  - 2 k  2 
k k 2 - h - 2k 2 - 2h 

2k 1 k 2 - h -- (k 2 + 1) 

oj 
k 2 

I 

-h 

- ( k  = + 2 

-~k 7 
k 2 _ h I 
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Table 4 (continued) 

( Ig)  a 3 = (1/3) t r A  3 ....... 3h 

I 0 2k k 2k 2h .... (k 2 + 1) 

B 3 =A 3 ...... a3I = k ......... (k ~" +1)  h 

k k= h - 2k 2 

ù- 2k 1 k 2 - h 

I 4k 2 k - k k (3k 2 + 1) k 2 +h 

A 4 = A B  3 . . . . . .  k k= +h - (3k= +1)  

k k 2 k: 

k (k ~ +h)  ..... k 

(V) a 4 = ( 1 / 4 ) t r A  4 = . (4k 2 +1)  

I 1 k ~k k k 2 k 2 + h 

B« =.4  4 a « I  = - k k 2 + h  k :  

- k k 2 k 2 

k (k ~ +h) .... k 2 

I 2k 2 + h 0 0 
0 2Æ 2 +h 0 

A~ =AB~ = 0 0 2k:  +h 

0 0 0 

0 0 0 

(VI) a s = t l / 5 ) t r A  s = 2 k :  +h 
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......... ( k f + h ) l  

:::~J 
(3k 2 + ] ~  

_ k 2 

k 2 + h ~  

k ~ _J o] 
0 

0 

0 

2k 2 + 

P ( 2 ; x ) =  x s hx  « - (2k ~ + 3 ) x  3 + 3 h x  2 + (4k 2 + l ) x  (2k 2 +h) 
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Computer programs have been developed based on this algorithm [141,142]. An 
example of computing the characteristic polynomial by the above algorithm is given 
for the weighted graph 2 in table 4. 

The efficiency of the Le Verrier-Faddeev-Frame method can be seen from 
the computation time needed to generate the characteristic polynomial of 1, which 
was 12 seconds on VAXl 1/730 [78]. 

8. Conclusions 

In 1972, two papers appeared in Theoretica Chimica Acta (the first by 
Hosoya [63] and the second by the Zagreb Group [37] ) reporting two independent 
graphical methods for computing the characteristic polynomial of chemical graphs. 
In 1977, the present author published a fairly detailed review in Croatica Chemi«a 
Acta on the graphical computation of the characteristic polynomial of a conjugated 
system using the Sachs formula [80]. Soon after this publication appeared, it became 
clear that the Sachs method, aithough very instructive and elegant, is not computa- 
tionally practical. This fact inspired the search for efficient computational methods 
for the characteristic polynomial of a chemical graph. Persistent in this objective 
were Hosoya, Balasubramanian, Randid, Dias, and the Zagreb Group. The most 
efficient method to date appears to be the procedure of Le Verrier, Faddeev and 
Frameù which was uncovered independently by Balasubramanian and by the Zagreb 
Group. This method provides an excellent algorithm for the computer generation 
of the characteristic polynomials for graphs of chemical interest. Thus, we are in a 
position similar to that of eleven years ago. At that time we had the Sachs procedure 
and thought how elegmlt and efficient the method was. However, very soon we found 
through, for example, the use of the topological resonance energy model that we 
needed a rauch more efficient computational procedure if we wished to consider 
large systems. Now, we have the "old" and elegant Le Verrier.-Faddeev Frame 
method, recently rediscovered and adopted for use on the computer for large graphs; 
it appears to be so efficient that it may well remain in use for many years. 
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